首页 > 数码科技 > 多普勒效应分析雷达测速仪的工作原理_雷达测速原理

多普勒效应分析雷达测速仪的工作原理_雷达测速原理

栏目:数码科技

作者:B姐

热度:0

时间:2024-03-01 09:54:26

雷达测速主要是利用多普勒效应原理:当目标向雷达天线靠近时,反射信号频率将高于发射机频率;反之,当目标远离天线而去时,反射信号频率将低于发射机率.如此即可借由频率的改变数值,计算出目标与雷达的相对速度.

故选:A.

测速仪原理

雷达测速原理是什么 雷达测速原理:

1、实际上在路口的摄像头对驾驶员闯红灯进行拍照可以通过许多种技术实现,在这方面并没有统一的标准和方法,完全取决于中标的设计施工单位;

2、通常情况下可以通过雷达触发拍照、感应线圈触发拍照或图像识别触发拍照等方式。在使用雷达触发方式时,当红灯亮时,在停车线前形成一个雷达区,当有车通过时启动电子快门照相,这时雷达测速探测器有可能工作;

3、在采用感应线圈触发拍照时,在道路施工时,在路面下埋有感应线圈,当有车闯红灯时,感应线圈启动电子快门拍照。在使用图像识别技术时,以地面白线为警戒区,当有车闯红灯时,地面白线被遮挡后触发照相;

4、由于采用的技术不同,所以没有任何一种设备可以完全预报闯红灯拍照。由于测速只采用雷达或激光技术,因此雷达测速探测器可以完全预报测速探测。 @2019

雷达的工作原理是什么?

测速仪原理?其实,对于机动车的行驶速度监测,国内交警部门有很多种类的测速工具(让车主防不胜防),其精准程度可想而知。那么,交警常用的测速设备是那些?工作原理是什么呢?

一、雷达测速

原理:通过测量雷达波的发射频率和反射波频率之间的变化量,计算出机动车的行驶速度。一般是由雷达测速模块和数码相机组成,两者是联动的。在检测区域里行驶的机动车超过预设的道路限速值就会有声音报警,超过预设的抓拍速度就会自动照相。

应用及分布:可用于流动及固定点测速。流动测速一般会隐蔽在路边或装在警车上,而固定点测速一般设置在桥梁和十字路口、隧道等危险地段。因为会发射雷达波,所以可以被探测到。

二、激光测速

原理:通过以固定间隔发射两次红外线光波,测量红外线光波在设备与目标之间的传送时间,根据光速不变原理,可得出两个距离,其差值除以发射时间间隔即可得出目标的速度。为了测量更精确,一般激光测速仪都会在一秒内发射高达上千组脉冲波来测算平均值。

应用及分布:可用于流动及固定点测速。由于探测范围小,因此设计时需要考虑安装角度带来的影响并对其进行校正,且只能对单一车道进行检测。不过其测量速度、监测目标准确度、测速精度都比雷达测速更高。

三、线圈感应

原理:通过测量机动车经过一组按一定距离埋设于地面的感应线圈的时间差,计算出机动车的行驶速度。为了确保数据准确可靠,通常会加入第三个线圈,与第二个线圈一起形成第二套独立的测速模块,对机动车速度进行第二次测量求平均值得出结论。因此发现有测速后立刻急刹车可以有效避免被抓拍。

应用及分布:该种测试手段仅可用于固定点测速,常见于国道线和城市的红绿灯处。由于此系统不会发出任何雷达微波,所以目前世界上所有的雷达探测器都不会对此系统发出警告。

四、视频分析

原理:通过测量机动车经过视频中一定距离的时间差,或对视频中目标机动车的运动轨迹进行实时跟踪并分析车辆在一定时间间隔内的移动距离,推算得出机动车的行驶速度。视频的缺点是对移动车辆的鉴别有一定的困难。

应用及分布:该种测试手段仅可用于固定点测速,常见于各种路口。视频测速也不会发出可检测到的信号,因此无法被探测到。

最后,APP提醒:目前许多车主会在车内安装电子狗来测速,一般几百块的电子狗其实是没有探测能力的,它只是事先把测速点数据输入进去,对于流动测速起不到任何作用。因此,把握行驶速度,切勿轻信电子狗。

雷达测速的原理是什么

雷达发射机产生足够的电磁能量,经过收发转换开关传送给天线。天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。

为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。根据电磁波的传播速度,可以确定目标的距离为:S=CT/2

其中S:目标距离

T:电磁波从雷达到目标的往返传播时间

C:电磁波的传播速度

雷达测定目标的方向是利用天线的方向性来实现的。通过机械和电气上的组合作用,雷达把天线的小事指向雷达要探测的方向,一旦发现目标,雷达读出些时天线小事的指向角,就是目标的方向角。两坐标雷达只能测定目标的方位角,三坐标雷达可以测定方位角和俯仰角。

测定目标的运动速度是雷达的一个重要功能,—雷达测速利用了物理学中的多普勒原理.当目标和雷达之间存在着相对位置运动时,目标回波的频率就会发生改变,频率的改变量称为多普勒频移,用于确定目标的相对径向速度,通常,具有测速能力的雷达,例如脉冲多普勒雷达,要比一般雷达复杂得多。

雷达的战术指标主要包括作用距离、威力范围、测距分辨力与精度、测角分辨力与精度、测速分辨力与精度、系统机动性等。

其中,作用距离是指雷达刚好能够可靠发现目标的距离。它取决于雷达的发射功率与天线口径的乘积,并与目标本身反射雷达电磁波的能力(雷达散射截面积的大小)等因素有关。威力范围指由最大作用距离、最小作用距离、最大仰角、最小仰角及方位角范围确定的区域。

雷达的技术指标与参数很多,而且与雷达的体制有关,这里仅仅讨论那些与电子对抗关系密切的主要参数。

根据波形来区分,雷达主要分为脉冲雷达和连续波雷达两大类。当前常用的雷达大多数是脉冲雷达。常规脉冲雷达周期性地发射高频脉冲。相关的参数为脉冲重复周期(脉冲重复频率)、脉冲宽度以及载波频率。载波频率是在一个脉冲内信号的高频振荡频率,也称为雷达的工作频率。

雷达天线对电磁能量在方向上的聚集能力用波束宽度来描述,波束越窄,天线的方向性越好。但是在设计和制造过程中,雷达天线不可能把所有能量全部集中在理想的波束之内,在其它方向上在在着泄漏能量的问题。能量集中在主波束中,我们常常形象地把主波束称为主瓣,其它方向上由泄漏形成旁瓣。为了覆盖宽广的空间,需要通过天线的机械转动或电子控制,使雷达波束在探测区域内扫描。

概括起来,雷达的技术参数主要包括工作频率(波长)、脉冲重复频率、脉冲宽度、发射功率、天线波束宽度、天线波束扫描方式、接收机灵敏度等。技术参数是根据雷达的战术性能与指标要求来选择和设计的,因此它们的数值在某种程度上反映了雷达具有的功能。例如,为提高远距离发现目标能力,预警雷达采用比较低的工作频率和脉冲重复频率,而机载雷达则为减小体积、重量等目的,使用比较高的工作频率和脉冲重复频率。这说明,如果知道了雷达的技术参数,就可在一定程度上识别出雷达的种类。

雷达的用途广泛,种类繁多,分类的方法也非常复杂。通常可以按照雷达的用途分类,如预警雷达、搜索警戒雷达、无线电测高雷达、气象雷达、航管雷达、引导雷达、炮瞄雷达、雷达引信、战场监视雷达、机载截击雷达、导航雷达以及防撞和敌我识别雷达等。除了按用途分,还可以从工作体制对雷达进行区分。这里就对一些新体制的雷达进行简单的介绍。

雷达的原理是怎么样的呢?

雷达测速主要是利用多普勒效应(Doppler Effect)原理:当目标向雷达天线靠近时,反射信号频率将高于发射机频率;反之,当目标远离天线而去时,反射信号频率将低于发射机频率。如此即可借由频率的改变数值,计算出目标与雷达的相对速度。 现已经广泛用于警察超速测试等行业。

众所周知,声波能够被反射。回声就是声波被反射引起的。光线照射到镜面上。也能被镜面反射。同样,当电磁波在传播途 中遇到障碍物时。也能被反射回来。雷达就是利用电磁波的这个特性工作的。雷达有一个特制的可转动地半球面形天线。它不仅能发射电磁波,还能够接收电磁波。光线向一定方向发射不连续的电磁波 。每次发射持续的时间为百万分之一秒,两次发射间隔的时间大约是发射时间的一百倍。这样,发射出去的电磁波如果遇到障碍 物,马上就被反射回来,并被光线接收到。指示仪器就可以判别出前面有飞机或舰艇之类的障碍物。怎样才能确定障碍物的位置呢?由于电磁波的传播速度为光速C,测出从发射电磁波到收到反射电磁波的时间t,就可以根据 公式s=c·(t/2)来确定障碍物的距离。再根据反射天线的方向和仰角就能够确定障碍物的位置了。实际上,这一切都是由雷 达指示器的荧光屏和仪表直接显示出来的,使用极其方便。雷达可以用来探测飞机、军舰、导弹及其他军事目标,是重要的军事设施。雷达装在轮船上,即使在黑夜和浓雾中也能清楚 地“看到”每一块礁石、每一片岛屿、每一个浮标,测出附近船只的距离、航向和航速。确保轮船航行的顺利与安全。装在机场控制塔里的雷达,能方便地知道飞机的高度、距离和方位,“引导”飞机驾驶员操纵飞机安全着陆。此外,用雷达还可以探测台风和暴雨,研究宇宙间星体的运动。交通管理人员手拿雷达测速器,可以方便地测出汽车是否超 速,以保证交通运输的安全……

一、雷达的基本原理

雷达-是近代的特殊的无线电观测设备,它是用以发现与测量目标位置的无线电技术仪器。如果将它的使用范围缩小来讲,就是测量无源活动目标(如飞机、军舰)的方位和距离的无线电技术仪器。

(一)雷达原理之一-无线电波的反射作用

谁都知道,蝙蝠白天躲在黑暗的地方,专在夜里飞出来寻找食物。然而,它为什么能够在黑夜里飞行,而不至于撞到障碍物,例如树林或房屋呢?几千年来人们都说这是因为它的眼睛怕光,却又能够在黑夜里看见东西的缘故。其实,这种揣测不很正确,我们来揭开蝙蝠的这个秘密,蝙蝠的嘴里,能够发出一种我们听不见的声音,这声音每秒钟振荡的次数,在25000到70000之间(人类的耳朵所能够感觉的声音,每秒钟振动数约为16~20000),已经超出人类耳朵所能感觉的范围,所以叫做超声波。蝙蝠的听觉器官很特殊,它能感觉到这种超声波。当它在黑暗中飞行的时候,嘴里常常发出超声波。这声波在某一个方向遇到了障碍物,就立刻从那里方向反射回来,其中有一部分反射到蝙蝠的耳朵里,它便知道在那个方向有障碍物,于是及时躲开。它凭着经验,还可以知道:回声急,障碍物近,回声慢,障碍物远。换句话说,它根据回声的快慢,来判断障碍物的位置的远近,根据回声传来的方向来判断障碍物所在的方向。

假如我们把“一股”短促而强力的超声波从舰艇的底部向下发射出去,它在水里的速度大约为在空气中速度的五倍,那么它会从海底反射回来,回到舰艇上。我们用一种特殊设备把它收下来,根据超声波从出发到舰艇所需的一段时间,就能不断地检查海洋的深度。利用超声波也可测量海洋中的暗礁或者测量敌人的潜水艇。

超声波固然有反射的特性,可以利用来测量距离,同样普通的声波、光波,乃至无线电波都是具有反射特性的,而且在雷达里不是采用声波,而是应用的无线电波。

雷达发射机发射出去脉冲式的无线电波,如果在无线电波传播的途径上遇到任何物体时,它就被反射回来。水面、大地、铁路、城市建筑,飞机和舰艇-所有这些对无线电波的反射都不同。反射回来的无线电波,其中有一部分回到雷达站上。其次则是从较远的物体上反射回来的。所有这些信号都被接收机接收到,并显示在雷达显示器上。

(二)雷达原理之二-事先能知道无线电波的传播速度

无线电波的速度(包括无线电波、光波)比声波的速度要大好多倍,它的速度为30万公里每秒。想知道这速度究竟有多大,举个例子,无线电波在一秒钟之内能绕地球七圈半。另外一个有趣的例子是,若你在演播厅听演唱,当你听到歌手的声音之前,声波已经通过广播电台传到一个相当远的距离以外去了。一个离你一千公里远的听众甚至可以通过收音机比你先听到美妙的歌声。

(三)雷达原理之三-定向发射

所谓定向发射即在一特定瞬间,用狭细的射束来发射脉冲电磁能。它有一个重要的优点,那就是能够节省能量,雷达站用小的功率就能“看”得远,而且效果好,例如一个人夜里在大房间看书的时候,他并不需要用灯照亮整个大房间,只需一盏台灯,将光照在书上,甚至支数很小的灯泡就足够,不至于伤害眼睛了。的确,这时整个房间的其余部分都是黑暗的,但是这并不妨碍看书,相反会使我们对书看得更清楚。

雷达工作也正是如此。由于它把能量集中在不大的空间里,所以是“照射”目标物最好的方法。

雷达的射束应该窄到何种程度呢?射束愈狭细,集中在其中的能量就愈大,被发现目标的方向也就指得越正确。假设在雷达的作用所照射的区域内出现了敌人的飞机,请问用“针”状的狭窄射束把雷达站所在地周围的空间扫一遍,需要多少时间呢?同时是否能不让敌人漏网?所花费的时间,想来是很多。在这段时间中,任何飞机都能逃出雷达的搜索区域。这就是说,“针”状射束是不适合的。射束的缩窄有着合理的极限,这种极限就在于能同等程度地满足对雷达所提出的各种要求。对负有不同使命的雷达站来说,解决这个问题的方法也绝然不同。防空哨雷达站的射束应该较宽,瞄准大炮用的雷达站相反的要窄。在许多情况下,为了适应雷达站特殊工作任务的需要,射束往往有着特殊的形状。

由此看来,雷达的基本原理就是电磁波的定向发射,它在导体上的反射,以及首先正确地知道了电波的传播速度。显然,要深刻地了解和掌握雷达技术,就是必不可少的基础。

通常,无线电广播用的是中波或短波。雷达,一般工作在超短波或微波。工作在超短波波段的雷达称为超短波雷达或米波雷达;工作在微波波段的雷达通称为微波雷达。微波雷达有时还细分为分米波雷达、厘米波雷达、毫米波雷达等。

那么,雷达为什么不能像广播电台那样,工作在中波或者短波呢?这是由雷达工作原理决定的。千里眼是借无线电波在目标上得到的反射才能“看”到目标的。波的反射有一个规律:目标越大,反射越强。因此,雷达所用无线电波的波长越短,在飞机或导弹等其它目标的反射会越强。所以,雷达必须工作在超短波或微波波段才能有效地发挥作用,探测到目标。同时,雷达天线是雷达的一个重要组成部分,假如,雷达工作在中波波段,要实现定向发射,就得把几十个甚至几百个能激起无线电波的金属棒排起来构成阵列天线,那将一付非常庞大的天线,这在实用中既不经济,也难以做到。所以雷达工作的波长不能太长。

雷达必须工作在上述波段,还有一个原因是与高空的电离层有关。三十年代,由于还没有造出超短波使用的大功率电子管,雷达只好用短波来工作,而电离层对短波是会反射的,因此往往把电离层反射回来的信号当作飞机。而频率超过30Hz以上的超短波无线电波就能穿过电离层直上太空,这就避免了电离层对无线电波的反射作用的影响。

多普勒效应分析雷达测速仪的工作原理_雷达测速原理